Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370672

RESUMO

Dietary intake is tightly coupled to gut microbiota composition, human metabolism, and to the incidence of virtually all major chronic diseases. Dietary and nutrient intake are usually quantified using dietary questionnaires, which tend to focus on broad food categories, suffer from self-reporting biases, and require strong compliance from study participants. Here, we present MEDI (Metagenomic Estimation of Dietary Intake): a method for quantifying dietary intake using food-derived DNA in stool metagenomes. We show that food items can be accurately detected in metagenomic shotgun sequencing data, even when present at low abundances (>10 reads). Furthermore, we show how dietary intake, in terms of DNA abundance from specific organisms, can be converted into a detailed metabolic representation of nutrient intake. MEDI could identify the onset of solid food consumption in infants and it accurately predicted food questionnaire responses in an adult population. Additionally, we were able to identify specific dietary features associated with metabolic syndrome in a large clinical cohort, providing a proof-of-concept for detailed quantification of individual-specific dietary patterns without the need for questionnaires.

2.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37162960

RESUMO

Clostridioides difficile colonizes up to 30-40% of community-dwelling adults without causing disease. C. difficile infections (CDIs) are the leading cause of antibiotic-associated diarrhea in the U.S. and typically develop in individuals following disruption of the gut microbiota due to antibiotic or chemotherapy treatments. Further treatment of CDI with antibiotics is not always effective and can lead to antibiotic resistance and recurrent infections (rCDI). The most effective treatment for rCDI is the reestablishment of an intact microbiota via fecal microbiota transplants (FMTs). However, the success of FMTs has been difficult to generalize because the microbial interactions that prevent engraftment and facilitate the successful clearance of C. difficile are still only partially understood. Here we show how microbial community-scale metabolic models (MCMMs) accurately predicted known instances of C. difficile colonization susceptibility or resistance in vitro and in vivo. MCMMs provide detailed mechanistic insights into the ecological interactions that govern C. difficile engraftment, like cross-feeding or competition involving metabolites like succinate, trehalose, and ornithine, which differ from person to person. Indeed, three distinct C. difficile metabolic niches emerge from our MCMMs, two associated with positive growth rates and one that represents non-growth, which are consistently observed across 15,204 individuals from five independent cohorts. Finally, we show how MCMMs can predict personalized engraftment and C. difficile growth suppression for a probiotic cocktail (VE303) designed to replace FMTs for the treatment rCDI. Overall, this powerful modeling approach predicts personalized C. difficile engraftment risk and can be leveraged to assess probiotic treatment efficacy. MCMMs could be extended to understand the mechanistic underpinnings of personalized engraftment of other opportunistic bacterial pathogens, beneficial probiotic organisms, or more complex microbial consortia.

3.
BMC Complement Med Ther ; 23(1): 367, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853370

RESUMO

INTRODUCTION: Infants who are born from mothers with HIV (infants who are HIV exposed but uninfected; iHEU) are at higher risk of morbidity and display multiple immune alterations compared to infants who are HIV-unexposed (iHU). Easily implementable strategies to improve immunity of iHEU, and possibly subsequent clinical health outcomes, are needed. iHEU have altered gut microbiome composition and bifidobacterial depletion, and relative abundance of Bifidobacterium infantis has been associated with immune ontogeny, including humoral and cellular vaccine responses. Therefore, we will assess microbiological and immunological phenotypes and clinical outcomes in a randomized, double-blinded trial of B. infantis Rosell®-33 versus placebo given during the first month of life in South African iHEU. METHODS: This is a parallel, randomised, controlled trial. Two-hundred breastfed iHEU will be enrolled from the Khayelitsha Site B Midwife Obstetric Unit in Cape Town, South Africa and 1:1 randomised to receive 8 × 109 CFU B. infantis Rosell®-33 daily or placebo for the first 4 weeks of life, starting on day 1-3 of life. Infants will be followed over 36 weeks with extensive collection of meta-data and samples. Primary outcomes include gut microbiome composition and diversity, intestinal inflammation and microbial translocation and cellular vaccine responses. Additional outcomes include biological (e.g. gut metabolome and T cell phenotypes) and clinical (e.g. growth and morbidity) outcome measures. DISCUSSION: The results of this trial will provide evidence whether B. infantis supplementation during early life could improve health outcomes for iHEU. ETHICS AND DISSEMINATION: Approval for this study has been obtained from the ethics committees at the University of Cape Town (HREC Ref 697/2022) and Seattle Children's Research Institute (STUDY00003679). TRIAL REGISTRATION: Pan African Clinical Trials Registry Identifier: PACTR202301748714019. TRIALS: gov: NCT05923333. PROTOCOL VERSION: Version 1.8, dated 18 July 2023.


Assuntos
Infecções por HIV , Vacinas , Feminino , Humanos , Lactente , Gravidez , Bifidobacterium longum subspecies infantis , Suplementos Nutricionais , Infecções por HIV/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , África do Sul
4.
Nat Commun ; 14(1): 6546, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863966

RESUMO

Many gut microorganisms critical to human health rely on nutrients produced by each other for survival; however, these cross-feeding interactions are still challenging to quantify and remain poorly characterized. Here, we introduce a Metabolite Exchange Score (MES) to quantify those interactions. Using metabolic models of prokaryotic metagenome-assembled genomes from over 1600 individuals, MES allows us to identify and rank metabolic interactions that are significantly affected by a loss of cross-feeding partners in 10 out of 11 diseases. When applied to a Crohn's disease case-control study, our approach identifies a lack of species with the ability to consume hydrogen sulfide as the main distinguishing microbiome feature of disease. We propose that our conceptual framework will help prioritize in-depth analyses, experiments and clinical targets, and that targeting the restoration of microbial cross-feeding interactions is a promising mechanism-informed strategy to reconstruct a healthy gut ecosystem.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Humanos , Estudos de Casos e Controles , Metagenoma
5.
Nat Commun ; 14(1): 5682, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709733

RESUMO

Longitudinal sampling of the stool has yielded important insights into the ecological dynamics of the human gut microbiome. However, human stool samples are available approximately once per day, while commensal population doubling times are likely on the order of minutes-to-hours. Despite this mismatch in timescales, much of the prior work on human gut microbiome time series modeling has assumed that day-to-day fluctuations in taxon abundances are related to population growth or death rates, which is likely not the case. Here, we propose an alternative model of the human gut as a stationary system, where population dynamics occur internally and the bacterial population sizes measured in a bolus of stool represent a steady-state endpoint of these dynamics. We formalize this idea as stochastic logistic growth. We show how this model provides a path toward estimating the growth phases of gut bacterial populations in situ. We validate our model predictions using an in vitro Escherichia coli growth experiment. Finally, we show how this method can be applied to densely-sampled human stool metagenomic time series data. We discuss how these growth phase estimates may be used to better inform metabolic modeling in flow-through ecosystems, like animal guts or industrial bioreactors.


Assuntos
Líquidos Corporais , Metagenoma , Animais , Humanos , Ecossistema , Fezes , Densidade Demográfica , Escherichia coli/genética
6.
bioRxiv ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37609334

RESUMO

Prior work has shown a positive scaling relationship between vertebrate body size and gut microbiome alpha-diversity. This observation mirrors commonly observed species area relationships (SAR) in many other ecosystems. Here, we show a similar scaling relationship between human height and gut microbiome alpha-diversity across two large, independent cohorts, controlling for a wide range of relevant covariates, such as body mass index, age, sex, and bowel movement frequency. Island Biogeography Theory (IBT), which predicts that larger islands tend to harbor greater species diversity through neutral demographic processes, provides a simple mechanism for these positive SARs. Using an individual-based model of IBT adapted to the gut, we demonstrate that increasing the length of a flow-through ecosystem is associated with increased species diversity. We delve into the possible clinical implications of these SARs in the American Gut Cohort. Consistent with prior observations that lower alpha-diversity is a risk factor for Clostridioides difficile infection (CDI), we found that individuals who reported a history of CDI were shorter than those who did not and that this relationship appeared to be mediated by alpha-diversity. We also observed that vegetable consumption mitigated this risk increase, also by mediation through alpha-diversity. In summary, we find that body size and gut microbiome diversity show a robust positive association, that this macroecological scaling relationship is related to CDI risk, and that greater vegetable intake can mitigate this effect.

7.
Cell Host Microbe ; 31(7): 1076-1078, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37442093

RESUMO

The composition of the human gut microbiome is heterogeneous across people. However, if you squint, co-abundant microbial genera emerge, accounting for much of this ecological variability. In this issue of Cell Host & Microbe, Frioux et al. provide a workflow for identifying these bacterial guilds, or "enterosignatures."


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Bactérias/genética , RNA Ribossômico 16S/genética , RNA Bacteriano
8.
bioRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909644

RESUMO

Microbially-derived short chain fatty acids (SCFAs) in the human gut are tightly coupled to host metabolism, immune regulation, and integrity of the intestinal epithelium. However, the production of SCFAs can vary widely between individuals consuming the same diet, with lower levels often associated with disease. A systems-scale mechanistic understanding of this heterogeneity is lacking. We present a microbial community-scale metabolic modeling (MCMM) approach to predict individual-specific SCFA production profiles. We assess the quantitative accuracy of our MCMMs using in vitro, ex vivo, and in vivo data. Next, we show how MCMM SCFA predictions are significantly associated with blood-derived clinical chemistries, including cardiometabolic and immunological health markers, across a large human cohort. Finally, we demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic, and probiotic interventions that optimize SCFA production in the gut. Our results represent an important advance in engineering gut microbiome functional outputs for precision health and nutrition.

9.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945445

RESUMO

Objective: Bowel movement frequency (BMF) variation has been linked to changes in the composition of the human gut microbiome and to many chronic conditions, like metabolic disorders, neurodegenerative diseases, chronic kidney disease (CKD), and other intestinal pathologies like irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Slow intestinal transit times (constipation) are thought to lead to compromised intestinal barrier integrity and a switch from saccharolytic to proteolytic fermentation within the microbiota, giving rise to microbially-derived toxins that may make their way into circulation and cause damage to organ systems. However, these phenomena have not been characterized in generally-healthy populations, and the connections between microbial metabolism and the early-stage development and progression of chronic disease remain underexplored. Design: Here, we examine the phenotypic impact of BMF variation across a cohort of over 2,000 generally-healthy, community dwelling adults with detailed clinical, lifestyle, and multi-omic data. Results: We show significant differences in key blood plasma metabolites, proteins, chemistries, gut bacterial genera, and lifestyle factors across BMF groups that have been linked, in particular, to inflammation and CKD severity and progression. Discussion: In addition to dissecting BMF-related heterogeneity in blood metabolites, proteins, and the gut microbiome, we identify self-reported diet, lifestyle, and psychological factors associated with BMF variation, which suggest several potential strategies for mitigating constipation and diarrhea. Overall, this work highlights the potential for managing BMF to prevent disease.

10.
Nat Med ; 29(4): 996-1008, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941332

RESUMO

Multiomic profiling can reveal population heterogeneity for both health and disease states. Obesity drives a myriad of metabolic perturbations and is a risk factor for multiple chronic diseases. Here we report an atlas of cross-sectional and longitudinal changes in 1,111 blood analytes associated with variation in body mass index (BMI), as well as multiomic associations with host polygenic risk scores and gut microbiome composition, from a cohort of 1,277 individuals enrolled in a wellness program (Arivale). Machine learning model predictions of BMI from blood multiomics captured heterogeneous phenotypic states of host metabolism and gut microbiome composition better than BMI, which was also validated in an external cohort (TwinsUK). Moreover, longitudinal analyses identified variable BMI trajectories for different omics measures in response to a healthy lifestyle intervention; metabolomics-inferred BMI decreased to a greater extent than actual BMI, whereas proteomics-inferred BMI exhibited greater resistance to change. Our analyses further identified blood analyte-analyte associations that were modified by metabolomics-inferred BMI and partially reversed in individuals with metabolic obesity during the intervention. Taken together, our findings provide a blood atlas of the molecular perturbations associated with changes in obesity status, serving as a resource to quantify metabolic health for predictive and preventive medicine.


Assuntos
Multiômica , Obesidade , Humanos , Índice de Massa Corporal , Estudos Transversais , Obesidade/metabolismo , Fenótipo
11.
mSystems ; 8(2): e0127022, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36943046

RESUMO

Microbial consortia drive essential processes, ranging from nitrogen fixation in soils to providing metabolic breakdown products to animal hosts. However, it is challenging to translate the composition of microbial consortia into their emergent functional capacities. Community-scale metabolic models hold the potential to simulate the outputs of complex microbial communities in a given environmental context, but there is currently no consensus for what the fitness function of an entire community should look like in the presence of ecological interactions and whether community-wide growth operates close to a maximum. Transitioning from single-taxon genome-scale metabolic models to multitaxon models implies a growth cone without a well-specified growth rate solution for individual taxa. Here, we argue that dynamic approaches naturally overcome these limitations, but they come at the cost of being computationally expensive. Furthermore, we show how two nondynamic, steady-state approaches approximate dynamic trajectories and pick ecologically relevant solutions from the community growth cone with improved computational scalability.


Assuntos
Consórcios Microbianos , Modelos Biológicos
12.
Nat Metab ; 4(11): 1560-1572, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36357685

RESUMO

Variation in the blood metabolome is intimately related to human health. However, few details are known about the interplay between genetics and the microbiome in explaining this variation on a metabolite-by-metabolite level. Here, we perform analyses of variance for each of 930 blood metabolites robustly detected across a cohort of 1,569 individuals with paired genomic and microbiome data while controlling for a number of relevant covariates. We find that 595 (64%) of these blood metabolites are significantly associated with either host genetics or the gut microbiome, with 69% of these associations driven solely by the microbiome, 15% driven solely by genetics and 16% under hybrid genome-microbiome control. Additionally, interaction effects, where a metabolite-microbe association is specific to a particular genetic background, are quite common, albeit with modest effect sizes. This knowledge will help to guide targeted interventions designed to alter the composition of the human blood metabolome.


Assuntos
Metabolômica , Microbiota , Humanos , Fezes , RNA Ribossômico 16S/genética , Metaboloma/genética
13.
Front Oncol ; 12: 914594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875150

RESUMO

The influence of metabolism on signaling, epigenetic markers, and transcription is highly complex yet important for understanding cancer physiology. Despite the development of high-resolution multi-omics technologies, it is difficult to infer metabolic activity from these indirect measurements. Fortunately, genome-scale metabolic models and constraint-based modeling provide a systems biology framework to investigate the metabolic states and define the genotype-phenotype associations by integrations of multi-omics data. Constraint-Based Reconstruction and Analysis (COBRA) methods are used to build and simulate metabolic networks using mathematical representations of biochemical reactions, gene-protein reaction associations, and physiological and biochemical constraints. These methods have led to advancements in metabolic reconstruction, network analysis, perturbation studies as well as prediction of metabolic state. Most computational tools for performing these analyses are written for MATLAB, a proprietary software. In order to increase accessibility and handle more complex datasets and models, community efforts have started to develop similar open-source tools in Python. To date there is a comprehensive set of tools in Python to perform various flux analyses and visualizations; however, there are still missing algorithms in some key areas. This review summarizes the availability of Python software for several components of COBRA methods and their applications in cancer metabolism. These tools are evolving rapidly and should offer a readily accessible, versatile way to model the intricacies of cancer metabolism for identifying cancer-specific metabolic features that constitute potential drug targets.

14.
Med ; 3(6): 388-405.e6, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690059

RESUMO

BACKGROUND: Statins remain one of the most prescribed medications worldwide. While effective in decreasing atherosclerotic cardiovascular disease risk, statin use is associated with adverse effects for a subset of patients, including disrupted metabolic control and increased risk of type 2 diabetes. METHODS: We investigated the potential role of the gut microbiome in modifying patient responses to statin therapy across two independent cohorts (discovery n = 1,848, validation n = 991). Microbiome composition was assessed in these cohorts using stool 16S rRNA amplicon and shotgun metagenomic sequencing, respectively. Microbiome associations with markers of statin on-target and adverse effects were tested via a covariate-adjusted interaction analysis framework, utilizing blood metabolomics, clinical laboratory tests, genomics, and demographics data. FINDINGS: The hydrolyzed substrate for 3-hydroxy-3-methylglutarate-coenzyme-A (HMG-CoA) reductase, HMG, emerged as a promising marker for statin on-target effects in cross-sectional cohorts. Plasma HMG levels reflected both statin therapy intensity and known genetic markers for variable statin responses. Through exploring gut microbiome associations between blood-derived measures of statin effectiveness and adverse metabolic effects of statins, we find that heterogeneity in statin responses was consistently associated with variation in the gut microbiome across two independent cohorts. A Bacteroides-enriched and diversity-depleted gut microbiome was associated with more intense statin responses, both in terms of on-target and adverse effects. CONCLUSIONS: With further study and refinement, gut microbiome monitoring may help inform precision statin treatment. FUNDING: This research was supported by the M.J. Murdock Charitable Trust, WRF, NAM Catalyst Award, and NIH grant U19AG023122 awarded by the NIA.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Inibidores de Hidroximetilglutaril-CoA Redutases , Microbiota , Estudos Transversais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/genética , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , RNA Ribossômico 16S/genética
15.
mSystems ; 6(5): e0096421, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34519531

RESUMO

Recent human feeding studies have shown how the baseline taxonomic composition of the gut microbiome can determine responses to weight loss interventions. However, the functional determinants underlying this phenomenon remain unclear. We report a weight loss response analysis on a cohort of 105 individuals selected from a larger population enrolled in a commercial wellness program, which included healthy lifestyle coaching. Each individual in the cohort had baseline blood metabolomics, blood proteomics, clinical labs, dietary questionnaires, stool 16S rRNA gene sequencing data, and follow-up data on weight change. We generated additional targeted proteomics data on obesity-associated proteins in blood before and after intervention, along with baseline stool metagenomic data, for a subset of 25 individuals who showed the most extreme weight change phenotypes. We built regression models to identify baseline blood, stool, and dietary features associated with weight loss, independent of age, sex, and baseline body mass index (BMI). Many features were independently associated with baseline BMI, but few were independently associated with weight loss. Baseline diet was not associated with weight loss, and only one blood analyte was associated with changes in weight. However, 31 baseline stool metagenomic functional features, including complex polysaccharide and protein degradation genes, stress-response genes, respiration-related genes, and cell wall synthesis genes, along with gut bacterial replication rates, were associated with weight loss responses after controlling for age, sex, and baseline BMI. Together, these results provide a set of compelling hypotheses for how commensal gut microbiota influence weight loss outcomes in humans. IMPORTANCE Recent human feeding studies have shown how the baseline taxonomic composition of the gut microbiome can determine responses to dietary interventions, but the exact functional determinants underlying this phenomenon remain unclear. In this study, we set out to better understand interactions between baseline BMI, metabolic health, diet, gut microbiome functional profiles, and subsequent weight changes in a human cohort that underwent a healthy lifestyle intervention. Overall, our results suggest that the microbiota may influence host weight loss responses through variable bacterial growth rates, dietary energy harvest efficiency, and immunomodulation.

16.
Cell Host Microbe ; 29(10): 1589-1598.e6, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34536346

RESUMO

Colorectal cancer is a major health concern worldwide. Growing evidence for the role of the gut microbiota in the initiation of CRC has sparked interest in approaches that target these microorganisms. However, little is known about the composition and role of the microbiota associated with precancerous polyps. Here, we found distinct microbial signatures between patients with and without polyps and between polyp subtypes using sequencing and culturing techniques. We found a correlation between Bacteroides fragilis recovered and the level of inflammatory cytokines in the mucosa adjacent to the polyp. Additional analysis revealed that B. fragilis from patients with polyps are bft-negative, activate NF-κB through Toll-like receptor 4, induce a pro-inflammatory response, and are enriched in genes associated with LPS biosynthesis. This study provides fundamental insight into the microbial microenvironment of the pre-neoplastic polyp by highlighting strain-specific genomic and proteomic differences, as well as more broad compositional differences in the microbiome.


Assuntos
Bacteroides fragilis/genética , Bacteroides fragilis/isolamento & purificação , Neoplasias Colorretais/microbiologia , Mucosa Intestinal/microbiologia , Idoso , Bacteroides fragilis/classificação , Bacteroides fragilis/fisiologia , Pólipos do Colo/imunologia , Pólipos do Colo/microbiologia , Pólipos do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Citocinas/genética , Citocinas/imunologia , Feminino , Microbioma Gastrointestinal , Genoma Bacteriano , Genômica , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Filogenia , Simbiose
17.
Gut Microbes ; 13(1): 1-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33890557

RESUMO

Many studies link the composition of the human gut microbiome to aberrant health states. However, our understanding of what constitutes a 'healthy' gut ecosystem, and how to effectively monitor and maintain it, are only now emerging. Here, we review current approaches to defining and monitoring gut microbiome health, and outline directions for developing targeted ecological therapeutics. We emphasize the importance of identifying which ecological features of the gut microbiome are most resonant with host molecular phenotypes, and highlight certain gut microbial metabolites as potential biomarkers of gut microbiome health. We further discuss how multi-omic measurements of host phenotypes, dietary information, and gut microbiome profiles can be integrated into increasingly sophisticated host-microbiome mechanistic models that can be leveraged to design personalized interventions. Overall, we summarize current progress on defining microbiome health and highlight a number of paths forward for engineering the ecology of the gut to promote wellness.


Assuntos
Biodiversidade , Microbioma Gastrointestinal , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Interações entre Hospedeiro e Microrganismos , Metaboloma , Animais , Biomarcadores , Dieta , Humanos , Medicina de Precisão
19.
Commun Biol ; 4(1): 316, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750910

RESUMO

Broad spectrum antibiotics cause both transient and lasting damage to the ecology of the gut microbiome. Antibiotic-induced loss of gut bacterial diversity has been linked to susceptibility to enteric infections. Prior work on subtherapeutic antibiotic treatment in humans and non-human animals has suggested that entire gut communities may exhibit tolerance phenotypes. In this study, we validate the existence of these community tolerance phenotypes in the murine gut and explore how antibiotic treatment duration or a diet enriched in antimicrobial phytochemicals might influence the frequency of this phenotype. Almost a third of mice exhibited whole-community tolerance to a high dose of the ß-lactam antibiotic cefoperazone, independent of antibiotic treatment duration or dietary phytochemical amendment. We observed few compositional differences between non-responder microbiota during antibiotic treatment and the untreated control microbiota. However, gene expression was vastly different between non-responder microbiota and controls during treatment, with non-responder communities showing an upregulation of antimicrobial tolerance genes, like efflux transporters, and a down-regulation of central metabolism. Future work should focus on what specific host- or microbiome-associated factors are responsible for tipping communities between responder and non-responder phenotypes so that we might learn to harness this phenomenon to protect our microbiota from routine antibiotic treatment.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Cefoperazona/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/microbiologia , Ração Animal , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Tolerância a Medicamentos , Disbiose , Fezes/microbiologia , Feminino , Genótipo , Camundongos Endogâmicos C57BL , Fenótipo , Alga Marinha , Fatores de Tempo
20.
Nat Metab ; 3(2): 274-286, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619379

RESUMO

The gut microbiome has important effects on human health, yet its importance in human ageing remains unclear. In the present study, we demonstrate that, starting in mid-to-late adulthood, gut microbiomes become increasingly unique to individuals with age. We leverage three independent cohorts comprising over 9,000 individuals and find that compositional uniqueness is strongly associated with microbially produced amino acid derivatives circulating in the bloodstream. In older age (over ~80 years), healthy individuals show continued microbial drift towards a unique compositional state, whereas this drift is absent in less healthy individuals. The identified microbiome pattern of healthy ageing is characterized by a depletion of core genera found across most humans, primarily Bacteroides. Retaining a high Bacteroides dominance into older age, or having a low gut microbiome uniqueness measure, predicts decreased survival in a 4-year follow-up. Our analysis identifies increasing compositional uniqueness of the gut microbiome as a component of healthy ageing, which is characterized by distinct microbial metabolic outputs in the blood.


Assuntos
Microbioma Gastrointestinal/fisiologia , Envelhecimento Saudável/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Aminoácidos/sangue , Bacteroides/metabolismo , Estudos de Coortes , Feminino , Humanos , Estilo de Vida , Masculino , Metabolômica , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Análise de Sobrevida , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...